Linearly Constrained Global Optimization and Stochastic Differential Equations
نویسندگان
چکیده
A stochastic algorithm is proposed for the global optimization of nonconvex functions subject to linear constraints. Our method follows the trajectory of an appropriately defined Stochastic Differential Equation (SDE). The feasible set is assumed to be comprised of linear equality constraints, and possibly box constraints. Feasibility of the trajectory is achieved by projecting its dynamics onto the set defined by the linear equality constraints. A barrier term is used for the purpose of forcing the trajectory to stay within the box constraints. Using Laplace’s method we give a characterization of a probability measure ( ) that is defined on the set of global minima of the problem. We then study the transition density associated with the projected diffusion process and show that its weak limit is given by . Numerical experiments using standard test problems from the literature are reported. Our results suggest that the method is robust and applicable to large-scale problems.
منابع مشابه
System Entropy Measurement of Stochastic Partial Differential Systems
Abstract: System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that ...
متن کاملAn extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative
Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملMultilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations
In this paper we develop and analyze a multilevel weighted reduced basis method for solving stochastic optimal control problems constrained by Stokes equations. Existence and uniqueness of the stochastic optimal solution is proved by establishing the equivalence between the constrained optimization problem and a stochastic saddle point problem. Analytic regularity of the optimal solution in the...
متن کاملStochastic global maximum principle for optimization with recursive utilities
In this paper, we study the recursive stochastic optimal control problems. The control domain does not need to be convex, and the generator of the backward stochastic differential equation can contain z. We obtain the variational equations for backward stochastic differential equations, and then obtain the maximum principle which solves completely Peng’s open problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 36 شماره
صفحات -
تاریخ انتشار 2006